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Neocortical Ab-amyloid deposition, one of the hallmark pathologic features of Alzheimer's disease (AD),
begins decades prior to the presence of clinical symptoms. As clinical trials move to secondary and even
primary prevention, understanding the rates of neocortical Ab-amyloid deposition and the age at which
Ab-amyloid deposition becomes abnormal is crucial for optimizing the timing of these trials. As APOE-ε4
carriage is thought to modulate the age of clinical onset, it is also important to understand the impact of
APOE-ε4 carriage on the age at which the neocortical Ab-amyloid deposition becomes abnormal. Here,
we show that, for 455 participants with over 3 years of follow-up, abnormal levels of neocortical Ab-
amyloid were reached on average at age 72 (66.5e77.1). The APOE-ε4 carriers reached abnormal levels
earlier at age 63 (59.6e70.3); however, noncarriers reached the threshold later at age 78 (76.1e84.4). No
differences in the rates of deposition were observed between APOE-ε4 carriers and noncarriers after
abnormal Ab-amyloid levels had been reached. These results suggest that primary and secondary pre-
vention trials, looking to recruit at the earliest stages of disease, should target APOE-ε4 carriers between
the ages of 60 and 66 and noncarriers between the ages of 76 and 84.

� 2020 Elsevier Inc. All rights reserved.
1. Introduction

Alzheimer's disease (AD), the most common form of dementia,
is characterized pathologically by the extracellular accumulation of
Ab-amyloid and intracellular accumulation of tau in the neocortex
(Jack et al., 2018). Neocortical accumulation of Ab-amyloid is a key
part of the cascade of pathologic changes leading to the onset of
clinical symptoms in AD (Hardy and Selkoe, 2002; Karran et al.,
2011) and is a process that initiates decades prior to clinical
manifestation of the disease (Jack et al., 2013a; Villemagne et al.,
2013). Increased understanding of the onset and rates of neocor-
tical Ab-amyloid deposition would provide improved disease
staging criteria particularly for preclinical AD. This is increasingly
important with clinical trials aimed at preventative treatment.

Carriage of an APOE-ε4 allele is a well-established risk factor for
AD (Harold et al., 2009), reported to impact the levels of neocortical
Ab-amyloid (Liu et al., 2013; Reiman et al., 2009; Rowe et al., 2010;
Villemagne et al., 2011); however, the nature of this impact is un-
clear. The literature appears to agree that APOE-ε4 carriage is asso-
ciated with the deposition of neocortical Ab-amyloid at an earlier
age (Bilgel et al., 2019; Fleisher et al., 2013;Mishraet al., 2018) aswell
as anearlieronset of disease (Corder et al.,1995). Some contributions
report that APOE-ε4 carriage is associated with an increased rate of
neocortical Ab-amyloid deposition (Bilgel et al., 2019; Jack et al.,
2013a; Mishra et al., 2018; Toledo et al., 2019), others only report a
difference in those with low neocortical Ab-amyloid burden (Lim
et al., 2017), while others report no difference in neocortical Ab-
amyloid accumulation rates between carriers and noncarriers
(Corder et al.,1995; Resnick et al., 2015; Saunders, 2000). Accounting
for the temporal relationship between neocortical Ab-amyloid
deposition and disease stage/progression may provide a clearer
understanding of the impact of APOE-ε4 carriage on neocortical Ab-
amyloid deposition.

In this study, we evaluate the age at which abnormal levels of
neocortical Ab-amyloid deposition can be detected and test our
I): Data used in preparation
(adni.loni.usc.edu). As such,
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hypotheses that carriage of an APOE-ε4 allele would be associated
with a) a younger age of onset and b) faster rates of neocortical Ab-
amyloid deposition. For that purpose, natural history modeling in
conjunction with survival analyses is used to jointly consider the
onset and rates of neocortical Ab-amyloid accumulation in refer-
ence to disease stage and progression.

2. Materials and methods

2.1. AIBL cohort

The Australian Imaging, Biomarker and Lifestyle (AIBL) cohort
study of aging combines data from neuroimaging, biomarkers,
lifestyle, clinical, and neuropsychological assessments. Two study
centers in Melbourne, VIC, and Perth, WA, Australia recruit mild
cognitively impaired (MCI) individuals and individuals with AD
from primary-care physicians or tertiary Memory Disorders Clinics.
Cognitively healthy normal controls (NCs) were recruited through
advertisement or from spouses of participants in the study. Exclu-
sion criteria were a history of non-AD dementia, Parkinson's dis-
ease, schizophrenia, bipolar disorder, obstructive sleep apnea,
serious head injury, current depression (Geriatric Depression Score
>5 out of 15), cancer in the past 2 years (with the exception of
basal-cell skin carcinoma), symptomatic stroke, uncontrolled dia-
betes, or current regular alcohol use. Between November 3, 2006,
and October 30, 2008, AIBL recruited 1112 eligible volunteers, who
were aged 60 years or older and fluent in English. An enrichment
cohort of 86 patients with AD, 124 MCI and 389 NCs were recruited
by AIBL betweenMarch 30, 2011, and June 29, 2015. At baseline, the
AIBL study participants were an average of 72 years of age, con-
sisted of 58% women, and 36% were APOE-ε4 carriers. The institu-
tional ethics committees of Austin Health, St Vincent's Health,
Hollywood Private Hospital, and Edith Cowan University approved
the AIBL study, and all volunteers gave written informed consent
before participating.

2.1.1. Positron Emission Tomography Ab-Amyloid
AIBL Ab-Amyloid positron emission tomography (PET) studies

consisted of a 30-minute acquisition starting 40 minutes after in-
jection of 370 MBq of 11C-Pittsburgh compound-B (11C-PiB). For
semiquantitative analysis, PET images were spatially normalized
with CapAIBL using an adaptive atlas (Bougeat et al., 2015). The
summed and spatially normalized PET images were then scaled to
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the recommended reference region, cerebellar cortex, to generate a
tissue ratio termed SUV ratio (SUVR), and sampled using a preset
template of narrow cortical volumes of interest. A global measure of
the Ab-amyloid level was computed using the mean SUVR in the
frontal, superior parietal, lateral temporal, lateral occipital, and
anterior and posterior cingulate regions. The abnormal threshold
for levels of Ab-amyloid in AIBL participants was set as 1.4 SUVR
(Jack et al., 2013b).

2.1.2. Assessment of APOE genotype
APOE genotype was determined through TaqMan genotyping

assays (Life Technologies) for rs7412 (Assay ID: C____904973_10)
and rs429358 (Assay ID: C___3084793_20). TaqMan genotyping
assays were performed on a QuantStudio 12K Flex Real-Time-PCR
systems (Applied Biosystems, Foster City, CA) using the TaqMan
GTXpress Master Mix (Life Technologies) methodology as per
manufacturer instructions. APOE carrier status was defined by the
presence (1 or 2 copies) or absence (0 copies) of the APOE-ε4 allele.

2.2. ADNI cohort

Data used in the preparation of this article were obtained from
the Alzheimer's Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a
publiceprivate partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging, PET, other biological markers,
and clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD participants. Subjects
were recruited from 57 sites across the United States and Canada
and are followed up annually. ADNI initially (ADNI 1) recruited 200
NC subjects, 400 MCI subjects, and 200 subjects with early AD. In
addition, ADNI GO, launched in 2009 included 200 subjects iden-
tified as having early mild cognitive impairment (EMCI). In 2011,
ADNI 2 [11] recruited 150 NC, 100 EMCI participants, 150 late mild
cognitive impairment (LMCI) participants and 150 AD participants.
More recently, ADNI 3 was launched (September 2016) to recruit an
additional 1200 volunteers.

2.2.1. PET Ab-Amyloid
ADNI Ab-amyloid PET studies consisted of an acquisition of 4 �

5-minute frames commencing 50e70 minutes after injection of
10 mCi of 18F Florbetapir (FBP). In the same manner as the AIBL
images, the ADNI PET images were spatially normalized with
CapAIBL using an adaptive atlas (Bougeat et al., 2015). The summed
and spatially normalized PET images were then scaled to a white
matter reference region (a composite of the centrum semiovale and
corpus callosum) (Chen et al., 2015) to generate a tissue ratio
termed SUVR and sampled using the same preset template of nar-
row cortical volumes of interest as for the AIBL cohort. A global
measure of the Ab-amyloid level was computed using the mean
SUVR in the frontal, superior parietal, lateral temporal, lateral oc-
cipital, and anterior and posterior cingulate regions. The abnormal
threshold for levels of Ab-amyloid in ADNI participants was set as
0.61 SUVR [equivalent to 1.4 SUVR for 11C-PiB and 1.10 for FBPwhole
cerebellum correction (Clark et al., 2012)].

2.2.2. Assessment of APOE genotype
A 3-mL aliquot of bloodwas taken in ethylenediaminetetraacetic

acidecontaining vacutainer tubes from ADNI participants, and
genomic DNA was extracted at Cogenics (now Beckman Coulter
Genomics) using the QIAamp DNA Blood Maxi Kit (Qiagen, Inc,
Valencia, CA) following the manufacturer's protocol. The two SNPs
(rs429358, rs7412) that define the APOE epsilon 2, 3, and 4 alleles
were evaluated by polymerase chain reaction amplification,
followed by HhaI restriction enzyme digestion, resolution on 4%
Metaphor Gel, and visualization by ethidium bromide staining
(Potkin et al., 2009; Saykin et al., 2010).

2.3. Statistical analysis

AIBL (n ¼ 209) and ADNI participants (n ¼ 246) with at least 3
years of follow-up evaluations for Ab-amyloidwith 11C-PiB (AIBL) or
18F Florbetapir PET (ADNI), respectively, who were considered to be
accumulating Ab-amyloid [rate of deposition >0.0 SUVR/year(Vil-
lemagne et al., 2013)], and had been genotyped for APOE were
included in this study. The following analyses were produced in
parallel for both the AIBL participants and the ADNI participants.
Further, all analyses were again replicated for the NC participants
(156 AIBL NCs and 106 ADNI NCs) in a sensitivity analysis. For
comparison purposes, in ADNI, EMCI, and LMCI participants were
both considered as MCI to align with the classifications in AIBL. All
analyses were performed in the R environment (R Development
Core Team, 2017).

Demographics: Baseline differences between APOE-ε4 carriers
and noncarriers were assessed with one-way t-tests for continuous
data (age), c2 testing for categorized data (sex, years of education,
disease classification), and KruskaleWallis testing for nonnormally
distributed data (length of follow-up). This was replicated for the
individuals excluded from the study as they were not accumulating
Ab-amyloid (46 AIBL and 14 ADNI participants).

The differences in rates of Ab-amyloid deposition: Each indi-
vidual's rate of deposition (SUVR/year) was estimated using a linear
model regressing their neocortical Ab-amyloid levels (SUVR)
against time since baseline evaluation (years). Differences in these
rates between APOE-ε4 carriers and noncarriers, as well as between
those above or below the neocortical Ab-amyloid threshold at
baseline, were evaluated using one-way t-tests, and presented us-
ing box and jitter plots. This analysis was also replicated for a
combined cohort of those accumulating and not accumulating Ab-
amyloid in a sensitivity analysis.

Natural history of deposition: Individual's rates of Ab-amyloid
deposition, calculated above, were combined to estimate the overall
natural history of Ab-amyloid deposition using the 4-step proced-
ure described previously (Budgeon et al., 2017; Villemagne et al.,
2013) and stratified by APOE-ε4 carriage. Briefly, the 4-step pro-
cedure comprises 1) estimating the mean and slope of each in-
dividuals' Ab-amyloid using linearmodels, 2) fitting a polynomial to
the estimated means and slopes across all individuals, 3) inte-
grating the reciprocal of the fitted polynomial, and 4) inverting the
function to obtain the natural history trajectory. Confidence in-
tervals (CI) for the natural history curves were created using the
bootstrapping procedure described previously (Budgeon et al.,
2017). Note: This analysis was replicated with stratification by sex.

Age of onset: Cox proportional hazards model of survival, cor-
rected for sex, and years of educationwere used to estimate the age
at which the participants reached abnormal levels of neocortical
Ab-amyloid. This analysis was replicated with APOE-ε4 carriage
stratification, to assess the effect of APOE-ε4 carriage on the age at
which the participants reached abnormal levels of Ab-amyloid.
Survival was defined as the time between birth and having a PET
scan indicating abnormal levels of Ab-amyloid, withdrawal from
the study, or the last completed follow-up examination. The event
was classified as having a PET scan indicating abnormal levels of Ab-
amyloid. For some individuals the date at which their amyloid
levels would have become abnormal was imputed, further details
on the imputation are provided in Supplementary Material. The
median age at which the participants reached abnormal levels of
Ab-amyloid, represented by the age at which 50% of the cohort
reached abnormal levels of Ab-amyloid, was reported.

http://adni.loni.usc.edu
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3. Data Availability

All ADNI and a subset of the AIBL data including images are
shared through the LONI Image & Data Archive (http://adni.loni.usc.
edu), a secure research data repository. Applications for access to
the entirety of the AIBL data can be made via application through
the AIBL website (https://aibl.csiro.au/).
4. Results

4.1. Demographics

There were a significantly higher proportion of NC participants
in the AIBL APOE-ε4 noncarriers comparedwith carriers (p¼ 0.001),
for the ADNI participants this relationship held as a trend (p ¼
0.057). Within AIBL, there were significantlymoremales among the
APOE-ε4 carriers compared with noncarriers (p ¼ 0.026), a finding
not observed in the ADNI participants (p ¼ 0.683). The ADNI APOE-
ε4 noncarriers were significantly older than carriers (p ¼ 0.005), no
differences were observed for age between APOE-ε4 carriers and
noncarriers in AIBL (p ¼ 0.196). No differences were observed be-
tween APOE-ε4 carriers and noncarriers, in either AIBL or ADNI, for
Years of Education, or length of follow-up (Table 1).

There were no significant differences between the APOE-ε4
carriers and noncarriers for these demographic measures in the
AIBL participants deemed to be nonaccumulators (Supplementary
Table 1), caution should be applied to these findings due to the
small sample size however. Due to the small sample size, compar-
isons could not be drawn for the ADNI nonaccumulators
(Supplementary Table 1). There appeared to be more males and
shorter follow-up in the nonaccumulators compared with the ac-
cumulators; again the small sample size of the excluded non-
accumulators should be noted.
4.2. Rates of Ab-amyloid deposition

A one-way t-test comparison suggested that APOE-ε4 carriers
and noncarriers did not have significantly (p ¼ 0.60) different rates
of deposition in those above the threshold for Ab-amyloid at
baseline (mean rates of deposition of 0.03 � 0.02 and 0.03 � 0.02
SUVR/year, respectively; equivalent to 1.7%/year), (Fig. 1A). How-
ever, prior to reaching the abnormal threshold AIBL APOE-ε4 car-
riers appeared to have had significantly (p ¼ 0.005) faster rates of
Ab-amyloid deposition (0.02 � 0.02 SUVR/year; 2.1%/year) in
comparisonwith AIBL APOE-ε4 noncarriers (0.01 � 0.01 SUVR/year;
1.1%/year), (Fig. 1B).

A one-way t-test comparison of individual ADNI participants'
rate of deposition of Ab-amyloid suggest that APOE-ε4 carriers and
noncarriers did not have significantly different rates of deposition
either after or prior to reaching the abnormal threshold (p ¼ 0.99
and p ¼ 0.82, respectively). The mean rates of Ab-amyloid deposi-
tion for ADNI participants beyond the abnormal threshold were
0.02 � 0.01 SUVR/year (2.2%/year) for both APOE-ε4 carriers and
noncarriers, (Fig. 1C). Prior to reaching the abnormal threshold,
ADNI APOE-ε4 carriers and noncarriers both had rates of Ab-amy-
loid deposition of 0.01 � 0.005 SUVR/year (1.3%/year; Fig. 1D).

In a sensitivity analysis considering only the NC participants, the
findings were equivalent with the only statistically significant dif-
ference (p ¼ 0.001) being found in the AIBL participants below the
threshold (Supplementary Fig. 1).

Including the nonaccumulators to the full data set resulted in no
significant differences between APOE-ε4 carriers and noncarriers
either above or below the threshold, for AIBL or ADNI participants
(Supplementary Fig. 2).
4.3. Natural history of neocortical Ab-amyloid deposition

Stratifying the natural history of neocortical Ab-amyloid depo-
sition by APOE-ε4 carriage indicated that on average AIBL APOE-ε4
carriers reached the abnormal threshold 14.9 (0.3e35.2) years prior
to AIBL noncarriers, (Fig. 2A). Similarly, on average ADNI APOE-ε4
carriers reached the abnormal threshold 18.9 (CI: 3.5e40.1) years
prior to ADNI noncarriers, (Fig. 2B). Plots for individuals' longitu-
dinal data (Step 1 in the method) and slope versus mean plots (Step
2) stratified by APOE-ε4 carriage are provided in Supplementary
Fig. 3 for AIBL and Supplementary Fig. 4 for ADNI. Note: When
stratified by sex, females appeared to reach the abnormal threshold
2 years prior to males, but this was not statistically significant, re-
sults not presented.

Replicating this in a sensitivity analysis of the NC, indicated that
on average NC AIBL APOE-ε4 carriers reached the abnormal
threshold 11.1 (-3.9e34.6) years prior to CN AIBL noncarriers,
(Supplementary Fig. 5). Please note that due to the small numbers
of CN in the ADNI cohort, specifically APOE-ε4 carriers (N¼37) the
models did not converge, and results are not presented.

4.4. Age of onset using survival analysis

Survival analysis indicated that 50% of the AIBL and ADNI par-
ticipants reached abnormal levels of Ab-amyloid by ages of 69.3
(66.5e73.5) and 73.6 (CI: 71.2e77.1), respectively, (Fig. 3A and B).
Stratifying the participants by APOE-ε4 carriage and replicating the
survival analysis indicated 50%ofAPOE ε4 carriers reached abnormal
levels of Ab-amyloid by ages 62.0 (CI: 59.6e66.5) and 65.1 (CI:
62.0e70.3) in AIBL and ADNI, respectively. In contrast, 50% of the
APOE-ε4 noncarriers reached abnormal levels of Ab-amyloid by ages
77.2 (CI 76.1-NA) and 79.3 (CI 75.9e84.4) in AIBL and ADNI,
respectively. Thesefindings suggest that on averageAPOE-ε4 carriers
reached abnormal levels of Ab-amyloid 15.2 years prior to APOE-ε4
noncarriers in AIBL and 14.2 (2.5e20.5) years in ADNI (Fig. 3C andD).

In the CN subgroups, 50% of CN APOE ε4 carriers reached
abnormal levels of Ab-amyloid by ages 66.2 (CI: 63.6e76.1) and 66.4
(CI: 63.8-NA) in AIBL and ADNI, respectively. In contrast, 50% of the
CN APOE-ε4 noncarriers reached abnormal levels of Ab-amyloid by
ages 77.6 (CI 71.6-NA) and 79.3 (CI 76.7-NA) in AIBL and ADNI,
respectively (Supplementary Fig. 6).

5. Discussion

Survival analyses indicated the average age that AIBL and ADNI
participants reached abnormal levels of neocortical Ab-amyloid
was 70 years of age, with CI ranging from 66 to 77 years of age.
Stratifying the survival analyses by APOE-ε4 carriage suggested that
on average APOE-ε4 carriers reached the abnormal threshold in
their early sixties, 15 (CI: 6e24) years earlier than noncarriers who
reached the threshold late in their seventies. Further, evaluation of
the natural history of deposition of neocortical Ab-amyloid also
suggested that APOE-ε4 carriers reached the abnormal threshold of
neocortical Ab-amyloid deposition approximately 15e19 (CI: 4e40)
years prior to noncarriers, in line with previous findings (Bilgel
et al., 2019; Fleisher et al., 2013; Mishra et al., 2018).

When restricting the analysis to only consider the cognitively
normal participants, cognitively normal APOE-ε4 carriers reached
the abnormal threshold in their midsixties, 12 (CI: 0e24) years
earlier than cognitively normal noncarriers who reached the
threshold in their midseventies.

It is noted thatwhile the age of onset andnatural history analyses
are not independent, there was exceptional consistency in the
findings across themethods aswell as across the two cohort studies,
despite the use of different Ab-amyloid tracers. The findings are also

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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Table 1
Demographics table for AIBL and ADNI participants stratified by APOE-ε4 carriage

APOE-ε4 carriage in AIBL p-value APOE-ε4 carriage in ADNI p-value

No Yes No Yes

Number of participants (N) 123 86 142 104
Clinical classification NC/MCI/AD (N) 102/15/6 54/16/16 0.001 69/73/0 37/67/0 0.057
Gender: Males (N [%]) 51 (41.46) 50 (58.14) 0.026 62 (43.66) 49 (47.12) 0.683
Age (years) (mean [sd]) 72.48 (6.99) 71.18 (7.23) 0.196 72.82 (6.83) 70.33 (6.87) 0.005
Years of education (N [%])
<9 8 (6.5) 5 (5.81) 0.952 0 (0) 1 (0.96) 0.620
9e12 50 (40.65) 38 (44.19) 20 (14.09) 12 (11.54)
13e15 24 (19.51) 17 (19.77) 29 (20.42) 20 (19.23)
>15 41 (33.33) 26 (30.23) 93 (65.49) 71 (68.27)

Years of follow-up (mean [sd]) 6.93 (1.19) 6.68 (1.35) 0.149 5.00 (1.20) 5.09 (1.31) 0.708
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consistent with literature looking at the clinical onset of AD which
reports APOE-ε4 carriage moves the age of clinical onset earlier by
10e20 years in comparison with noncarriers (Bilgel et al., 2016;
Corder et al., 1993; Jack et al., 2014; Jansen et al., 2015).

Based on group comparisons, APOE-ε4 carriers and noncarriers
appeared to have similar rates of neocortical Ab-amyloid
Fig. 1. (A) Boxplots detailing the rates of Ab-amyloid deposition for AIBL participants above t
APOE-ε4 carriage. (B) Boxplots detailing the rates of Ab-amyloid deposition for AIBL particip
stratified by APOE-ε4 carriage. (C) Boxplots detailing the rates of Ab-amyloid deposition f
Florbetapir SUVR�0.61) stratified by APOE-ε4 carriage. (D) Boxplots detailing the rates of Ab-
at baseline (18F- Florbetapir SUVR�0.61) stratified by APOE-ε4 carriage.
deposition, with the only exception being AIBL participants prior to
reaching the threshold for neocortical Ab-amyloid. In this group,
APOE-ε4 carriers appeared to have significantly faster rates of
deposition than noncarriers.

Overall, the findings presented in this article suggest that the
natural history of neocortical Ab-amyloid deposition in APOE-ε4
he abnormal threshold for Ab-amyloid at baseline (11C-PiB PET SUVR�1.4) stratified by
ants below the abnormal threshold for Ab-amyloid at baseline (11C-PiB PET SUVR�1.4)
or ADNI participants above the abnormal threshold for Ab-amyloid at baseline (18F-
amyloid deposition for ADNI participants below the abnormal threshold for Ab-amyloid



Fig. 2. (A) The natural history of deposition of neocortical Ab-amyloid in AIBL participants stratified by APOE-ε4 carriage. Shaded areas indicate 95% confidence intervals. (B) The
natural history of deposition of neocortical Ab-amyloid in ADNI participants stratified by APOE-ε4 carriage. Shaded areas indicate 95% confidence intervals.
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carriers starts approximately 15 years earlier but has a similar
trajectory to that of APOE-ε4 noncarriers. For the same burden of
neocortical Ab-amyloid, the rate of deposition is similar for both
APOE-ε4 carriers and noncarriers (demonstrated by drawing hori-
zontal lines through Fig. 2A and B). These findings fit with the
previous literature that APOE-ε4 carriage is not associated with the
rate of disease progression, only with earlier onset of disease
(Corder et al., 1995; Resnick et al., 2015; Saunders, 2000). Further,
they go someway to explaining the conflicting reports that APOE-ε4
carriage is also associated with rate of deposition and/or disease
progression (Bilgel et al., 2019; Craft et al., 1998; Hoyt et al., 2005;
Jack et al., 2013a; Lim et al., 2017; Mishra et al., 2018; Toledo et al.,
2019; Villemagne et al., 2011): if an age matched population was
considered (or age corrected modeling used) then the rate of
deposition would appear to be higher in APOE-ε4 carriers versus
noncarriers. This would be due to APOE-ε4 carriers being 15 years
further along in disease progression and having higher neocortical
Ab-amyloid burden as well as potentially higher rates of deposition
(demonstrated by drawing vertical lines through Fig. 2A and B).
Therefore, the difference in rate of deposition between APOE-ε4
carriers and noncarriers previously reported in the literature may
be a function of a difference in disease stage opposed to a difference
in APOE-ε4 carriage. The temporal relationship between onset and
rate is an important consideration and previous evaluations
considering these as independent factors or not using longitudinal
data may have limited their ability to draw valid conclusions.

When stratifying by sex, no significant differences between
males and females were observed in the natural history evaluations.
As the effect of sex was of a much smaller magnitude at 2 years than
that of APOE-ε4 at 15 years, it is possible that this study was not
powered to observe a statistically significant difference.

This study has a number of other limitations. Firstly, there were
not enough APOE-ε4 homozygotes to enable evaluations on the
dose-effect of APOE-ε4 genotype to be undertaken. Secondly, a lack
of APOE-ε2 carriers prevented further evaluations to understand the
implications of APOE-ε2 carriage and its interplay with APOE-ε4



Fig. 3. (A) KaplaneMeier plot detailing, by age, the prevalence of AIBL participants with high levels of Ab-amyloid at baseline (11C-PiB PET SUVR�1.4). Shaded areas indicate 95%
confidence intervals. (B) Kaplan-Meier plot detailing, by age, the prevalence of ADNI participants with high levels of Ab-amyloid at baseline (18F-Florbetapir SUVR�0.61). Shaded
areas indicate 95% confidence intervals. (C) Kaplan-Meier plot detailing, by age, the prevalence of AIBL participants with high levels of Ab-amyloid at baseline (11C-PiB PET
SUVR�1.4) stratified by APOE-ε4 carriage. Shaded areas indicate 95% confidence intervals. (D) KaplaneMeier plot detailing, by age, the prevalence of ADNI participants with high
levels of Ab-amyloid at baseline (18F-Florbetapir SUVR�0.61) stratified by APOE-ε4 carriage. Shaded areas indicate 95% confidence intervals.
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carriage. Thirdly, given the focus on rates of Ab-amyloid deposition,
only accumulators were included in most of this study which may
contrast with other reports and might preclude the generalizability
of the findings. Analysis of the small number of non-accumulators
available resulted in loss of statistical significance of the differ-
ence in rates of change between AIBL APOE-ε4 carriers and non-
carriers prior to reaching the threshold, no other differences were
found. Fourthly, the analysis is restricted to the longitudinal eval-
uation of neocortical Ab-amyloid, and it will be necessary to
extrapolate this analysis to incorporate peripheral Ab-amyloid and
large longitudinal tau studies once they become available. The
participants were volunteers whowere not randomly selected from
the community and were generally well educated; thus, these
findings might only be valid in similar cohorts and this limitation
precludes the generalization of the findings to the general popu-
lation. In addition, in view of the stringent selection criteria in both
AIBL and ADNI, which excluded individuals with cerebrovascular
disease or other dementias, the effect of other comorbidities on the
trajectories might be underestimated. Lastly, longitudinal Ab-am-
yloid levels were obtained from 11C PiB PET imaging in AIBL and 18F
Florbetapir PET imaging in ADNI and while both underwent the
same CapAIBL normalization, differences in PET scanner and tracer
kinetics may contribute a somewhat larger variance in the results.

It has been established that the rates of neocortical Ab-amyloid
deposition impact disease progression (Villemagne et al., 2013),
earlier onset of Ab-amyloid deposition may therefore lead to earlier
disease onset. Therefore, understanding the age-related, temporal,
deposition of neocortical Ab-amyloid as well as the impact of APOE-



Fig. 3. (continued).
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ε4 carriage has essential implications for understanding disease
mechanisms and informing the timing for therapeutics and di-
agnostics (Ungar et al., 2014). This is of paramount importance
when considering disease staging and/or clinical trial inclusion
criteria; for instance, clinical trials will potentially need to consider
alternative recruitment criteria such as younger age ranges for
APOE-ε4 carriers in comparison with non-carriers. The ability to
accurately target individuals at appropriate stages of the disease for
inclusion in relevant clinical trials could afford such trials a better
chance of success in the quest to delay and prevent AD.
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